
Whither Fortran Forum?

Brad Richardson and Damian Rouson

1 Motivation

As a newsletter dedicated to the world’s oldest programming language, ACM SIGPLAN Fortran Forum
holds a unique place in the literature. For nearly forty years, Fortran Forum has chronicled the language
that brings the world its weather and climate predictions (Skamarock et al. 2008; Danabasoglu et al.
2020) and supports the design of power plants (Geelhood et al. 2011) and vehicles that traverse land, air,
and space (Cifuentes 2012; Biedron et al. 2019). When Fortran Forum, n'ee ForTec Forum, published its
inaugural issue, FORTRAN was still spelled in upper case and was “the most widely used programming
language” according to an article by founding Editor Loren Meissner (Meissner 1982).

Fortran Forum has published a mix of research articles, columns, and news with the most highly
cited research articles garnering nearly 1,000 citations since publication (Numrich and Reid 1998).

A key factor in the success of a publication is attracting a steady stream of authors to submit
articles. One impediment to this can be the difficulty of the process of writing and preparing an article
for submission. It is the hope that by using a simpler format for article content, making use of practices
and tools familiar to most programmers, and automating a significant portion of the authoring process
- namely spell checking and formatting - we can lower the barrier to entry for authors.

Another possible obstacle to authors can be the review process. ACM Fortran Forum has tradi-
tionally not been a peer reviewed journal, but the editor is exploring the possibility of having a peer
reviewed option. The editor would prefer that the review process be open (public) as a way of encour-
aging reviewers and authors to be on good behavior. This also allows prospective new authors to see
how the process works and not be turned off by fear of the unknown.

Finally, by having much of the process automated and encouraging authors to utilize the template,
it can alleviate some of the burden on the editors for producing new issues of the journal. This can
help ensure a regular publication schedule, without which new authors might not be attracted. It can
also ensure that the publication adheres to a consistent style and has a quality format, also something
beneficial for attracting prospective authors.

2 The Template Format

The article template uses markdown as the format. This was chosen as an approachable, yet powerful
format. The syntax is very lightweight, making the content easily readable even unprocessed. This
makes it easy to learn, and easy to write in.

Additionally, markdown is well supported by a large variety of tools, meaning authors will not have
a difficult time using it with their favorite editors. It also means there are a large number of resources
available for learning about it, and for helping to troubleshoot any issues that might be encountered.

Also, because markdown is stored as plain text, it is convenient for version control systems. This
makes tracking changes easy, and enables a process of collaboration familiar to our target authors: pro-
grammers. The authors of this article have had much success collaborating on projects using markdown
and version control.

3 The Template Repository

The authors chose to store this template in a GitHub repository for several reasons. First, this allows
the template to be publicly available and thus obtaining a copy is easy. In fact, by utilizing GitHub’s
Template Repository feature, getting started writing a new article with the template is practically as
simple as clicking a button.

1 ACM Fortran Forum, August 2020, 39, 1

https://guides.github.com/features/mastering-markdown/

Next, storing the template as a GitHub repository makes it easy for users to submit feedback.
Anyone can open an issue to report a bug, or suggest changes that should be made. Anyone can also
contribute directly to improving the template by submitting a pull request.

Finally, GitHub provides convenient facilities for automation in a git repository. As described later
in this article, we make significant use of this feature to check a variety of things. This helps to reduce
the burden on both authors and the editors, as well as catch simple mistakes.

4 How the Template Works

Click the “Use This Template” button in the article template repository to create your own copy.
You write your article in the provided template file (this file), using markdown format. You can also
add additional references to the included bibliography.bib file in bibtex format, and then cite those
references as demonstrated below. All of this editing can be done in a web browser via GitHub, but if
you’re familiar with git can be done in whatever method is most convenient for you.

For every commit made to your repository, the provided CI script (.github/workflows/CI.yml)
will convert your article to a pdf that can be downloaded from the “Actions” tab of your repository on
GitHub by clicking on the most recent run and looking for the “Artifacts” section. If you are working
on your own machine and have pandoc and LATEXinstalled, you can generate the same preview locally
using the command found in the “Render Paper” section of the CI script.

4.1 Some Additional Features

In addition to most of the usual features of markdown, such as headings, bulleted and numbered lists,
and hyperlinks, this template supports some features also required for producing quality articles.

4.1.1 Citations

Invariably, any article will need to cite prior work. This is done by including an entry for the reference
you would like to cite in the bibliography.bib file. Then, within the text of the article, citations are
made using rMarkdown syntax, as illustrated below for quick reference.

� @cifuentes2012using -> Cifuentes (2012)
� [@berna1997frapcon] -> (Berna et al. 1997)
� [@biedron2019fun3d; @danabasoglu2020community] -> (Biedron et al. 2019; Danabasoglu et
al. 2020)

4.1.2 Figures With Captions and References

Quite frequently it is desirable to include a figure within an article, and refer to it within the text.
This can be done similarly to regular markdown, but with some additional syntax as shown below.
The results of this can then be seen in Figure 1, with the reference to it generated with the syntax
\autoref{fig:example}.

![The Fortran logo from fortran-lang.org\label{fig:example}](Fortran-logo.png){ width=20% }

Figure 1: The Fortran logo from fortran-lang.org

ACM Fortran Forum, August 2020, 39, 1 2

https://github.com/fortran-lang/fortran-forum-article-template/issues/new/choose
https://github.com/fortran-lang/fortran-forum-article-template/compare
https://github.com/fortran-lang/fortran-forum-article-template
http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html

4.1.3 Equations

Another aspect quite frequently used in articles is mathematics. One can use single dollar signs ($) to
delimit inline mathematics. For example, $e = m c^2$ will be rendered as e = mc2.

Double dollar signs can be used to make self-standing equations, as illustrated by the syntax below
being rendered into the equation that follows.

$$

\frac{\partial u}{\partial t}

+ \left(u \cdot \nabla \right) u

- \nu \nabla^2 u

= \nabla w + g

$$

∂u

∂t
+ (u · ∇)u− ν∇2u = ∇w + g

You can also use plain LATEXfor equations, as illustrated by the syntax below, and rendered into
Equation 1, referred to by the sytanx \autoref{eq:boltzmann}.

\begin{equation}\label{eq:boltzmann}

\left(\frac{\partial}{\partial t}

+ \overrightarrow{v_1} \cdot \nabla_{\overrightarrow{r}}

+ \frac{\overrightarrow{K}}{m} \cdot \nabla_{\overrightarrow{v_1}} \right) f_1

= \int d\Omega \int d\overrightarrow{v_2} \sigma\left(\Omega\right)

\left| \overrightarrow{v_1} - \overrightarrow{v_2} \right|

\left(f_1’f_2’ - f_1f_2 \right)

\end{equation}

(
∂

∂t
+−→v1 · ∇−→r +

−→
K

m
· ∇−→v1

)
f1 =

∫
dΩ

∫
d−→v2σ (Ω) |−→v1 −−→v2 | (f ′

1f
′
2 − f1f2) (1)

4.1.4 Source Code

In a journal about a programming language, one invariably needs to include some source code. You can
write code inline by enclosing it in single back-ticks like ‘code‘ -> code. You can also write multi-line
snippets of code directly in the document by including a line of three back-ticks before and after. The
result looks something like the following.

x = y + z

if (thing) then

call do_something()

else

call do_other()

end if

While the above methods work and are acceptable, we highly recommend writing your source code
in separate files. The CI script will then compile and possibly run, any of your code to ensure it works.
We use the Fortran Package Manager to do so. You can then include the file by having an empty code
block (i.e. two lines of three back-ticks), but on the first line, after the back-ticks include syntax like
{include=src/library s.f90}. We use the external pandoc filter py-pandoc-include-code, which
also has options for including portions of the named file.

submodule(library_m) library_s

implicit none

3 ACM Fortran Forum, August 2020, 39, 1

https://github.com/fortran-lang/fpm
https://github.com/veneres/py-pandoc-include-code

contains

module procedure construct_library_t

new_library_t%datum_ = datum

end procedure

module procedure do_something_useful

! (not really)

end procedure

end submodule

5 Submitting an Article

The process of writing and submitting an article can now become much simpler. No longer will you
need to battle with word processor template or fight with the difficulties of LATEX. Formatting is not
something the author must worry about. Just write the content.

To submit an article for publication, follow the instructions described in the previous section to write
your article. Once your article is ready to review, contact the editors of the Journal at ???, and make
sure that they have access to view the repository with your article. If you elect to have your article peer
reviewed prior to publication, you will also need to grant access to the reviewers. Any review comments
will be submitted as GitHub Issues. Once all review comments have been satisfactorily addressed, the
editors will be able to include your article in the next issue of the journal.

6 Automated Checks

The template repository comes with several automated checks in place. These checks are executed for
any change that is pushed to the repository. The script that executes them is stored in the repository
at .github/workflows/CI.yml. The script uses only open-source and easily available software, so the
same commands can be used locally. The script can also be edited, if some reason an article has some
different, specific requirements. Note however than any significant changes to the process of rendering
the article to a pdf may present a barrier to having it published.

The first check, and of primary importance is that the paper is rendered to pdf and made available
to download for preview. As noted earlier, this preview can be downloaded from the “Actions” tab of
your repository on GitHub. This should dramatically reduce the chance of having articles submitted
which the editors are unable to render for publication.

Next, a spell checker is used to check the contents of the paper for spelling errors. Any misspelled
words are reported. This should help find spelling errors earlier in the writing process, and help reduce
the chances that any make it to publication.

Finally, any Fortran source code will be compiled and possibly executed. The Fortran Package
Manager (fpm) is used to alleviate the burden on authors of putting together their own build system.
See its documentation for the specifics of its use. This should help avoid the publication of source code
and examples that contain errors.

References

Berna, GA, GA Beyer, KL Davis, and DD Lanning. 1997. “FRAPCON-3: A Computer Code for the
Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup.”
Nuclear Regulatory Commission, Washington, DC (United States). Div. of

Biedron, Robert T, Jan-Reneé Carlson, Joseph M Derlaga, Peter A Gnoffo, Dana P Hammond, William
T Jones, Bil Kleb, et al. 2019. FUN3D Manual: 13.6. National Aeronautics; Space Administration,
Langley Research Center.

ACM Fortran Forum, August 2020, 39, 1 4

https://github.com/fortran-lang/fpm
https://github.com/fortran-lang/fpm

Cifuentes, Arturo O. 2012. Using MSC/NASTRAN: Statics and Dynamics. Springer Science & Business
Media.

Danabasoglu, Gokhan, J-F Lamarque, J Bacmeister, DA Bailey, AK DuVivier, Jim Edwards, LK Em-
mons, et al. 2020. “The Community Earth System Model Version 2 (CESM2).” Journal of Advances
in Modeling Earth Systems 12 (2).

Geelhood, KJ, WG Luscher, CE Beyer, and JM Cuta. 2011. “Fraptran 1.4: A Computer Code for
the Transient Analysis of Oxide Fuel Rods.” US Nuclear Regulatory Commission, Office of Nuclear
Regulatory Research, NUREG/CR-7023 1.

Meissner, Loren P. 1982. “The Fortran Programming Language: Recent Developments and a View of
the Future.” In ACM SIGPLAN Fortran Forum, 1:3–8. 1. ACM New York, NY, USA.

Numrich, Robert W, and John Reid. 1998. “Co-Array Fortran for Parallel Programming.” In ACM
Sigplan Fortran Forum, 17:1–31. 2. ACM New York, NY, USA.

Skamarock, William C, Joseph B Klemp, Jimy Dudhia, David O Gill, Dale M Barker, Wei Wang, and
Jordan G Powers. 2008. “A Description of the Advanced Research WRF Version 3. NCAR Technical
Note-475+ STR.”

5 ACM Fortran Forum, August 2020, 39, 1

	Motivation
	The Template Format
	The Template Repository
	How the Template Works
	Some Additional Features
	Citations
	Figures With Captions and References
	Equations
	Source Code

	Submitting an Article
	Automated Checks
	References

